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Abstract

In this paper, we propose a new approach for surface re-
covery from planar sectional contours. The surface is re-
constructed based on the so-called “Equal Importance Cri-
terion,” which suggests that every point in the region con-
tributes equally to the reconstruction process. The prob-
lem is then formulated in terms of a partial differeXntial
equation, and the solution is efficiently calculated from
distance transformation. To make the algorithm valid for
different application purposes, both the isosurface and the
primitive representations of the object surface are derived.
The isosurface is constructed by PDE (Partial Differential
Equation), which can be solved iteratively. The traditional
distance interpolating method, which was used by several
researchers for surface reconstruction, is an approximate
solution of the PDE. The primitive representations are ap-
proximated by Voronoi Diagram transformation of the sur-
face space. Isosurfaces have the advantage that subsequent
geometric analysis of the object can be easily carried out
while primitive representation is easy to visualize. The
proposed technique allows for surface recovery at any de-
sired resolution, thus avoiding the inherent problems of
correspondence, tiling, and branching.

1 Introduction
Surface reconstruction from a set of planar sectional

contours has been an important problem in diverse scien-
tific fields. These contours define the intersections of the
object surface with a set of parallel planes along a desired
orientation. For example, CT and MRI techniques can pro-
vide dense serial sectional representation of electron den-
sity and water molecule concentration at different locations
along a particular axis. Similarly, in confocal microscopy,
cross sections are obtained by focusing the optical system
at specific locations along thez axis. The propose of our
work is to utilize these cross sections to recover the three-
dimensional surfaces of the object for visualization as well
as geometric analysis.

Most of the existing techniques treat the “surface from
contours” as a primitive reconstruction problem. The prim-
itives are calculated from the adjacent planar contours ac-
cording to their geometrical relationship. The approaches
lead to three sources of ambiguities [7, 12, 16, 17, 18, 21,
32, 33]: (1) correspondence, (2) tiling, and (3) branching
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problems. A few techniques aim to represent the surface
as the zero-set of an implicit function [15, 20, 25] which
can be visualized by,e.g., the matching cubes algorithm.
A field function is computed in each slice, and the volume
data is constructed by spline interpolation of the slice im-
ages. These approaches also lead to some ambiguities: (1)
field function, (2) artificial surface and (3) efficiency.

In this paper, we treat the problem in a new way. We
derive both the isosurface-based and primitive-based rep-
resentations of the target object so that the reconstructed
surface is efficient for visualization as well as geometric
analysis. This approach is based on representing the prob-
lem as a partial differential equation (PDE), which can be
solved iteratively [10]. The isosurface is calculated by lin-
ear interpolation between the distance transformation of
adjacent contours while the primitives are computed from
the Voronoi Diagram (VD). Although the distance interpo-
lation is used by Jones and Chen [20], it is only an approx-
imation of the solution of the PDE. Our solution naturally
avoids the correspondence, tiling, and branching problems
in favor of a more robust and efficient solution. The under-
lying constraint is based on the Equal Importance Criterion
(EIC), which suggests that all points contribute equally to
the shape-reconstruction process. Formally, the constraint
states that surface height decreases linearly along the tra-
jectory of its gradient. As a result, the problem reduces to
solving a PDE. Experimental results on both synthetic data
and real contours are included.
2 Equal Importance Criterion

The proposed reconstruction problem is undercon-
strained and ill-posed. To constrain the problem, we im-
pose a smoothness measure based on the Equal Importance
Criterion (EIC). Consider a pair of contoursC1 andC2. Let
Oi(x; y); i = 1; 2 be the binary “object function” such
thatOi(x; y) = 1 if the point (x; y) belongs to the ob-
ject (inside),Oi(x; y) = 0 if (x; y) is on the curve, and
Oi(x; y) = �1, otherwise. The surface spaceR(C1; C2) is
defined by:

R(C1; C2) = f(x; y)jO1(x; y)O2(x; y) � 0g (1)

In R(C1; C2), we want to construct a surfacef(x; y) such
that f(C1) = 1; f(C2) = 2. Obviously, in the absence
of no constraints, infinitely many solutions exist. To con-
strain the problem, we assert thatevery point inR(C1; C2)
is equally important and contributes similarly to the re-
construction process. Any other assumption means that we
know something about the surface.We call this theEqual
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Importance Criterion. This constraint is formalized by re-
quiring that the change in the gradient-magnitude along
the gradient direction should be zero, that is:J1(f) =

5(j 5 f j) � 5f

j5fj
= 0 where5f indicates the gradient

of f , j j the norm and� the inner product. The above PDE
implies that along each trajectory of the gradient of the sur-
face, the magnitude of the gradient is a constant. In an-
other words, the height decreases linearly from 2 to 1. The
level curves of the surface are equally distributed along the
gradient direction. Thus, in view of height, which is our
only evidence about surface, all points are equally impor-
tant to us.J1 can be reduced to the “Infinity Laplacian”
J2(f) = f2xfxx + 2fxfyfxy + f2yfyy = 0 which has been
studied in the literature [1, 2, 3, 14]. Thus,

J2(f) = 0; (x; y) 2 R(C1; C2)

s:t: f(C1) = 1; f(C2) = 2: (2)

3 Isosurface reconstruction
In our PDE-based approach, the correspondence, tiling,

and branching problems have been eliminated and the dis-
tance betweenC1 andC2 in thez direction is no longer im-
portant because it only changes the solution by a scale. We
now develop an efficient solution for the above equation.
3.1 Solving the PDE

Let’s defineDi(x; y); i = 1; 2 as theDistance Trans-
formationof curveCi, whereDi(x; y) has the same sign
of Oi(x; y). For each pointp (shown in Figure 1), there
should be a gradient trajectory
 passing through it such
that it intersectsC1 andC2 atp1 andp2, respectively. Since
C1 andC2 are equal height contours, it is easy to show that
the normal of these two contours and the gradient of sur-
face are in the same direction. Thus,
 ? C1 at p1 and

 ? C2 at p2. We can approximate the curve
, passing
throughp, by drawing two line segmentspp01 ? C1; pp

0
2 ?

C2, to createp01pp
0
2. Let l denote the length of
 fromp1 to

p2. Hence,l � jp01pj + jp02pj. The preceding formulation
indicates thatjp01pj = �D1(p), jp02pj = D2(p). Since the
height decreases linearly,f can be approximated by:

f(x; y) =
2jp01pj+ jp02pj

jp01pj+ jp02pj
=
D2(x; y)� 2D1(x; y)

D2(x; y) �D1(x; y)
(3)
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Figure 1: Approximation solution of the PDE.

3.2 Isosurface construction
The three-dimensional isosurface repre-

sentation,�(x; y; z); 1 � z � 2, can now be expressed
as:

�(x; y; z) = (z � 1)D2(x; y) + (2� z)D1(x; y) (4)

This (zero value) isosurface�(x; y; z) = 0 is:

z(x; y) =
D2(x; y) � 2D1(x; y)

D2(x; y)� D1(x; y)
(5)

which is exactly the surface that we reconstructed in Equa-
tion (3). Note that Equation (4) is exactly the distance
interpolation as used in [20]. Equation (4) is better than
Equation (3) because it works for any adjacentC1 andC2
even if C1 = C2. Thus, our algorithm treats any con-
tour and topological changes naturally and cannot fail.
From Equation (5), since1 � z � 2 if and only if
D2(x; y)D1(x; y) � 0, thus�(x; y; z) = 0 occurs only
in the regionR(C1; C2). Thus, we cannot get an artificial
isosurface.

The proposed method can be applied iteratively to ev-
ery pair of adjacent contoursCi; Ci+1; i = 1; :::;m � 1
for constructing a series of subsurfacesSi. These sub-
surfaces,Si : i = 1; :::;m � 1, form the whole surface,
namelyS =

S
i Si. The final output of the algorithm is

a three-dimensional data with new slices inserted between
everyCi andCi+1. If we want a resolution of� < 1, say
0.1, along thez direction, reconstruction should include
between each pair of adjacent contoursZ � 1 new slices
with Z = 1

�
(an integerZ is expected).

In most cases, the contours are close to one another,
thus, the smoothness of the union surface is not a prob-
lem. When the contours are considerably apart, the surface
may be not smooth at the contour locations. The simplest
way to smooth the surface is to convolve�(x; y; z) with a
small scale three-dimensional Gaussian filter, which is well
known as equivalent to move every point on the surface
along its normal direction at a speed of its mean curvature
[22]. Those points or regions with high curvatures will be
smoothed.
4 Primitive representation

A three-dimensional triangle is the basic surface patch
used in most visualization systems. In this section, we
show how to approximate the surface defined by Equation
(3) as an assembly of triangles. The basic idea is to par-
tition R(C1; C2) into two-dimensional triangles and then
project them to three-dimensional space.
4.1 Partitioning R(C1; C2)

Partitioning is based on the Voronoi Diagram (VD), one
of the most fundamental data structures in computational
geometry and computer vision [4, 24, 23, 35]. Like most
of the previous works [5, 11, 28, 37], we assume thatC1; C2
are polygonal curves. The vertices and segments linking
them are called elements. The VD is a set of points in-
sideR(C1; C2), where each of them has at least two clos-
est elements equidistant to it.R(C1; C2) is divided by its
VD into singly-connected regions, called Voronoi Regions
(VR), according to the nearest-neighbor-rule. Each point in
R(C1; C2) is associated with the element closest to it, and
all the points in one VR have the same closest element.
See Figure 2. The “net-like” VD consists of line segments
and parabola that are fitted by polygon curves [19, 34, 36].
Thus, each VR becomes a polygon.

An iterative approach then partitionseach VR into tri-
angles. The approach begins by randomly finding two non-
sequential vertices in one VR so that when linked by a seg-
ment, the segment is totally inside the VR. This segment
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Figure 2: Voronoi diagram.

divides the VR into two parts. The algorithm returns for
each part that is a triangle. Otherwise, this part is set as a
new polygon, and the process continues recursively.
4.2 Reconstructing three-dimensional triangles

The computed two-dimensional triangles are then pro-
jected into three-dimensional space, and the corresponding
z-values of the vertices (of the triangles) are calculated by
Equation (3). An example is shown in Figure 3.
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Figure 3: 3D triangle reconstruction. (a) Two-dimensional
triangles; and (b) three-dimensional patches.

Two specific situations need more careful treatment.
First, if C1 and C2 intersect at pointp, then the z-value
of p can be either 1 or 2, as shown in Figure 4. In 2D,
let p = (x; y). In 3D,p is denoted byp1 = (x; y; 1) onC1
andp2 = (x; y; 2) onC2. In this case, an additional triangle
b�p1�p2 besides trianglesa�b�p2 andb�c�p1 must be
constructed to preserve the continuity of the surface. Sec-
ond, if C1 andC2 share a common segment, as shown in
Figure 4, the z-value of that segment can also be either 1
or 2. In 2D, leta = (x1; y1), b = (x2; y2). In 3D, a and
b are denoted bya1 = (x1; y1; 1); a2 = (x1; y1; 2); b1 =
(x2; y2; 1); b2 = (x2; y2; 2), respectively. Hence, a rectan-
glea1 � a2 � b2 � b1 must be constructed.

5 Experimental results
The proposed protocol has been tested on real medical

images for both the isosurface representation (Figures 5)
and the primitive representations (Figure 6).
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Figure 4: C1; C2 intersect at point p. (a)Two-
dimensional partition; (b)three-dimensional triangles;
(c)Two-dimensional partition; and (d) three-dimensional
rectangle.
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Figure 5: Reconstruction results of white matter in cortex
and region due to edema.
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Figure 6: Surface reconstructed from CT data. (a)(c) sur-
face reconstructed from 22 contours; (b)(d) surface recon-
structed from 16 contours;

6 Conclusion
Shape from cross-sectional contours is an important

problem in diverse fields of science and has been studied
extensively. However, some of these methods suffer from
correspondence, tiling, and branching problems. The nov-
elty of the proposed method is in its unique smoothness
measure, the corresponding PDE, and its simple solution
based on distance transformation. We showed that a linear
solution provides an adequate representation of the isosur-
face. In the case of primitive representation, VD gives us a
natural segmentation of the surface space and enables us to
construct small surface patches more easily for any shape.
We have tested and verified our approach on data with dif-
ferent degrees of complexities, ranging from simple ge-
ometric features to complex and convoluted structures of
cortex.
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